A New Framework: Short-Term and Long-Term Returns in Stochastic Multi-Armed Bandit

Abdalaziz Sawwan (Presenter) and Jie Wu Department of Computer and Information Sciences Temple University

- Introduction to Multi-Armed Bandit (MAB) problems
- Challenges in the existing MAB models
- Previous work
- Proposed framework
- Extended UCB-based algorithms
- Regret analysis
- Simulations
- Future work

- Introduction
- Challenges in the existing MAB models
- Previous work
- Proposed framework
- Extended UCB-based algorithms
- Regret analysis
- Simulations
- Future work

Introduction

- The Multi-Armed Bandit (MAB) Problem is a fundamental paradigm in sequential decision-making
- An agent must choose between multiple options (arms) to maximize the total reward
- Balancing:
 - **exploration** (trying new options)
 - **exploitation** (choosing the best-known option)

Introduction

- Attracted significant attention from researchers in various fields
- Rich literature on the theory, algorithms, and applications
- Applications:
 - Online advertising
 - Recommendation systems
 - Clinical trials and more

- Introduction
- Challenges in the existing MAB models
- Previous work
- Proposed framework
- Extended UCB-based algorithms
- Regret analysis
- Simulations
- Future work

Challenges in the existing MAB models

- **Delayed feedback**: The true reward of an action may not be immediately observable.
- **Missing information**: Information from delayed feedback may be incomplete.
- Exploration vs. exploitation: Balancing the trade-off remains a challenge, especially with delayed feedback.

- Introduction
- Challenges in the existing MAB models
- Previous work
- Proposed framework
- Extended UCB-based algorithms
- Regret analysis
- Simulations
- Future work

Previous work

- Dudik et al. 1 were the first to consider delayed feedback
 Fixed delay
- Pike-Burke et al. [2] considered:
 - getting the sum of rewards that arrive at the same round
 - assumed that the expected delay is known
- Lancewicki et al. 3:
 - were the first to consider unrestricted delayed feedback
 - time can be reward-dependent
 - infinite-delay is allowed
 - improved regret bounds

[1] Dudik, M., et al. "Efficient optimal learning for contextual bandits." arXiv preprint arXiv:1106.2369 (2011).

[2] Pike-Burke, C., et al. "Bandits with delayed, aggregated anonymous feedback." International Conference on Machine Learning. PMLR, 2018.

[3] Lancewicki, T., et al. "Stochastic multi-armed bandits with unrestricted delay distributions." International Conference on Machine Learning. PMLR, 2021.

- Introduction
- Challenges in the existing MAB models
- Previous work
- Proposed framework
- Extended UCB-based algorithms
- Regret analysis
- Simulations
- Future work

- Combines **short-term** (instant) and **long-term** (delayed) rewards
- Pulling an arm *i* yields:
 - short-term reward drawn from distribution F_i
 - long-term reward drawn from distribution R_i
- Dominance of short-term or long-term rewards is controlled by:
 - tunable parameter κ
 - delay distribution D_i
- Known relationship between short-term and long-term reward distributions

- F_i and R_i are related by a **linear transformation**
- The linear transformation factor is κ
 - $\kappa \in [0,1]$
- κ is the long-term to short-term scaling factor
- It makes the two rewards observed from an arm reasonably related

- This makes $r_t(i) \in [0, 1], f_t(i) \in [0, \kappa]$
- For the delay $d_t(i)$: its domain is $\mathbb{N} \cup \{\infty\}$
 - $d_t(i) = \infty \rightarrow r_t(i)$ will never be observed
- μ_i : the mean value of R_i
- $\kappa \mu_i$: the mean value of F_i

Relationship between Classic and New Framework:

- Classic MAB model: Instantaneous feedback
- Delayed stochastic MAB model: Rewards observed after a time delay
- New framework: unifies both models with tunable parameter κ

- Introduction
- Challenges in the existing MAB models
- Previous work
- Proposed framework
- Extended UCB-based algorithms
- Regret analysis
- Simulations
- Future work

```
Algorithm 1 UCB for Short-Term and Long-Term Rewards
Input: T, K. //Number of rounds and number of arms.
Output: The set of pulled arms a_t s.t. t \in [1, T].
Initialization: t \leftarrow 1. //Start from the first round.
      Pull each arm i \in [1, K] one time.
      Observe any incoming reward.
      Let t \leftarrow t + K.
1: While t < T do
2: for i \in [1, K] do
3: n_t(i) \leftarrow \Sigma_{\tau:t > \tau + d_\tau} \mathbb{I}\{a_\tau = i\}.
4: \hat{\mu}_t(i) \leftarrow \frac{1}{n_t(i)} \Sigma_{\tau:t > \tau + d_\tau} \mathbb{I}\{a_\tau = i\}(r_\tau + \frac{f_\tau}{\kappa}).
      UCB_t(i) \leftarrow \hat{\mu}_t(i) + \sqrt{\frac{2\log(T)}{n_t(i)}}.
5:
      Pull arm a_t = \arg \max_i UCB_t(i).
6:
      Observe reward.
7:
8:
      Let t \leftarrow t+1.
```

Algorithm 2 SE for Short-Term and Long-Term Rewards **Input**: T, K. //Number of rounds and number of arms. **Output**: The set of pulled arms a_t s.t. $t \in [1, T]$. **Initialization**: $t \leftarrow 1, S \leftarrow [1, K]$. //Start from the first round. 1: While t < T do Pull each arm $i \in S$. 2: 3: Observe all incoming feedback. 4: Set $t \leftarrow t + |S|$. 5: **for** $i \in [1, K]$ **do** 6: $n_t(i) \leftarrow \Sigma_{\tau:t > \tau + d_\tau} \mathbb{I}\{a_\tau = i\}.$ 7: $\hat{\mu}_t(i) \leftarrow \frac{1}{n_t(i)} \Sigma_{\tau:t > \tau + d_\tau} \mathbb{I}\{a_\tau = i\}(r_\tau + \frac{f_\tau}{\kappa}).$ $UCB_t(i) \leftarrow \hat{\mu}_t(i) + \sqrt{\frac{2\log(T)}{n_t(i)}}.$ 8: $ULB_t(i) \leftarrow \hat{\mu}_t(i) - \sqrt{\frac{2\log(T)}{n_t(i)}}.$ 9: 10: Update S by including all arms except all arms i such that there exists j with $UCB_t(i) < LCB_t(j)$.

Algorithm 3 PSE for Short-Term and Long-Term Rewards **Input**: T, K. //Number of rounds and number of arms. **Output**: The set of pulled arms a_t s.t. $t \in [1, T]$. Initialization: $t \leftarrow 1, S \leftarrow [1, K], \ell \leftarrow 0$. 1: While t < T do 2: Let $S_{\ell} \leftarrow S$, $\ell \leftarrow \ell + 1$. //Phase counting. 3: While $S_{\ell} \neq \emptyset$ do 4: Pull each arm $i \in S_{\ell}$, observe incoming feedback. 5: Set $t \leftarrow t + |S_{\ell}|$. for $i \in [1, K]$ do 6: 7: $n_t(i) \leftarrow \Sigma_{\tau:t > \tau + d_\tau} \mathbb{I}\{a_\tau = i\}.$ 8: $\hat{\mu}_t(i) \leftarrow \frac{1}{n_t(i)} \Sigma_{\tau:t > \tau + d_\tau} \mathbb{I}\{a_\tau = i\}(r_\tau + \frac{f_\tau}{\kappa}).$ $UCB_t(i) \leftarrow \hat{\mu}_t(i) + \sqrt{\frac{2\log(T)}{n_t(i)}}.$ 9: $ULB_t(i) \leftarrow \hat{\mu}_t(i) - \sqrt{\frac{2\log(T)}{n_t(i)}}.$ 10: Eliminate all arms that were observed at least $\frac{\log(T)}{2^{-2\ell-4}}$ 11: times from S_{ℓ} . 12: Update S by including all arms except all arms i such

2: Update S by including all arms except all arms i such that there exists j with $UCB_t(i) < LCB_t(j)$.

- Introduction
- Challenges in the existing MAB models
- Previous work
- Proposed framework
- Extended UCB-based algorithms
- Regret analysis
- Simulations
- Future work

Regret analysis

• Regret is defined as follows:

$$\mathcal{R}_T = \max_i \mathbb{E}[\Sigma_{t=1}^T (r_t(i) + f_t(i))] - \mathbb{E}[\Sigma_{t=1}^T r_t(a_t) + f_t(a_t)]$$
$$= (1+\kappa) \times (T\mu_{i^*} - \mathbb{E}[\Sigma_{t=1}^T \mu_{a_t}]) = (1+\kappa) \times \mathbb{E}[\Sigma_{t=1}^T \Delta_{a_t}],$$

Regret analysis

Theorem The regret of the strategy in Algorithm 2 is bounded under our model. The bound is given by

$$\mathcal{R}_{T} \leq \min_{\vec{q} \in \{0,1\}^{K}} \sum_{i \neq i^{*}} 40(\log T/\Delta_{i})(1/q_{i} + 1/q_{i^{*}}) + \log(K) \max_{i \neq i^{*}} \{(d_{i}(q_{i}) + d_{i^{*}}(q_{i^{*}}))\Delta_{i}\}\} + \kappa\sqrt{KT \log T}.$$

Furthermore, we can get another incomparable different bound for the regret, which is given by

$$\mathcal{R}_T \le \min_{q \in (0,1]} \sum_{i \ne i^*} 325 \frac{\log T}{q\Delta_i} + 4 \max_i d_i(q) + \kappa \sqrt{KT \log T}.$$

Regret analysis

Theorem The regret of the strategy in Algorithm 3 is bounded under our model. The bound is given by

$$\mathcal{R}_T \leq \min_{\vec{q} \in (0,1]^K} \sum_{i \neq i^*} 290 \log(T) / q_i \Delta_i + \log(T) \log(K) \max_{i \neq i^*} d_i(q_i) \Delta_i + \kappa \sqrt{KT \log T}.$$

- Introduction
- Challenges in the existing MAB models
- Previous work
- Proposed framework
- Extended UCB-based algorithms
- Regret analysis
- Simulations
- Future work

Simulations

- Synthetic data:
 - Generated to test the algorithms under controlled conditions
- Real-world data:
 - Collected from a real application to demonstrate practical performance
 - Application of sparse learning of incomplete traffic speed data
- Performance metric: Total regret

Simulations

Simulations

- Introduction
- Challenges in the existing MAB models
- Previous work
- Proposed framework
- Extended UCB-based algorithms
- Regret analysis
- Simulations
- Future work

Future Work

- Explore potential framework extensions, such as incorporating partial feedback
- **Investigate** other algorithms to be adapted to the new framework
- **Relax** the condition of having a linear transformation between the two reward distributions
- **Make** *κ* an unknown random variable
- Include multiple long-term rewards for pulling an arm
- Apply the framework to additional real-world problems

Conclusion

- General framework for MAB with short-term and long-term rewards
- Near-optimal Extended UCB-based algorithms
- Regret analysis of the proposed algorithms
- Evaluation on synthetic and real-world data to demonstrate the effectiveness of the proposed algorithms

Abdalaziz Sawwan (Presenter) and Jie Wu Department of Computer and Information Sciences Temple University

