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Introduction

• The Multi-Armed Bandit (MAB) Problem is a fundamental paradigm 
in sequential decision-making

• An agent must choose between multiple options (arms) to
maximize the total reward

• Balancing:
• exploration (trying new options)

• exploitation (choosing the best-known option)



Introduction

• Attracted significant attention from researchers in various fields

• Rich literature on the theory, algorithms, and applications

• Applications:
• Online advertising

• Recommendation systems

• Clinical trials and more
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Challenges in the existing MAB models

• Delayed feedback: The true reward of an action may not be 
immediately observable.

• Missing information: Information from delayed feedback may be 
incomplete.

• Exploration vs. exploitation: Balancing the trade-off remains a 
challenge, especially with delayed feedback.
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Previous work

• Dudik et al. [1] were the first to consider delayed feedback
• Fixed delay

• Pike-Burke et al. [2] considered:
• getting the sum of rewards that arrive at the same round

• assumed that the expected delay is known

• Lancewicki et al. [3]:
• were the first to consider unrestricted delayed feedback

• time can be reward-dependent

• infinite-delay is allowed

• improved regret bounds
[1] Dudik, M., et al. "Efficient optimal learning for contextual bandits." arXiv preprint arXiv:1106.2369 (2011).
[2] Pike-Burke, C., et al. "Bandits with delayed, aggregated anonymous feedback." International Conference on Machine Learning. PMLR, 2018.
[3] Lancewicki, T., et al. "Stochastic multi-armed bandits with unrestricted delay distributions." International Conference on Machine Learning. PMLR, 2021.
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Proposed framework

• Combines short-term (instant) and long-term (delayed) rewards

• Pulling an arm 𝑖 yields:

• short-term reward drawn from distribution 𝐹𝑖
• long-term reward drawn from distribution 𝑅𝑖

• Dominance of short-term or long-term rewards is controlled by:

• tunable parameter 𝜅

• delay distribution 𝐷𝑖

• Known relationship between short-term and long-term reward 
distributions
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Proposed framework

• 𝐹𝑖 and 𝑅𝑖 are related by a linear transformation

• The linear transformation factor is 𝜅
• 𝜅 ∈ [0, 1]

• 𝜅 is the long-term to short-term scaling factor

• It makes the two rewards observed from an arm reasonably related



Proposed framework

• This makes 𝑟𝑡 𝑖 ∈ 0, 1 , 𝑓𝑡 𝑖 ∈ 0, 𝜅

• For the delay 𝑑𝑡 𝑖 : its domain is ℕ ∪ ∞
• 𝑑𝑡 𝑖 = ∞ → 𝑟𝑡(𝑖) will never be observed

• 𝜇𝑖: the mean value of 𝑅𝑖
• 𝜅𝜇𝑖: the mean value of 𝐹𝑖
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Proposed framework

Relationship between Classic and New Framework:

• Classic MAB model: Instantaneous feedback

• Delayed stochastic MAB model: Rewards observed after a time delay

• New framework: unifies both models with tunable parameter 𝜅
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Regret analysis

• Regret is defined as follows:
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Simulations

• Synthetic data:
• Generated to test the algorithms under controlled conditions

• Real-world data:
• Collected from a real application to demonstrate practical performance

• Application of sparse learning of incomplete traffic speed data

• Performance metric: Total regret



Simulations
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Future Work

• Explore potential framework extensions, such as incorporating
partial feedback

• Investigate other algorithms to be adapted to the new framework

• Relax the condition of having a linear transformation between
the two reward distributions

• Make 𝜅 an unknown random variable

• Include multiple long-term rewards for pulling an arm

• Apply the framework to additional real-world problems



Conclusion

• General framework for MAB with short-term and long-term
rewards

• Near-optimal Extended UCB-based algorithms

• Regret analysis of the proposed algorithms

• Evaluation on synthetic and real-world data to demonstrate the
effectiveness of the proposed algorithms



Q&A
Abdalaziz Sawwan (Presenter) and Jie Wu

Department of Computer and Information Sciences

Temple University


